This message is in English and at the bottom in Italian

Dear doctoral students,

we are offering you the possibility to participate in a series of seminars given in the frame of the course Modern Trends in Chemistry, Industry, and Management for the master's degree in Chemistry. Participation can be both in the presence as like as online. The general schedule is at the end of the message.

Almost all the seminars will be held by industrial researchers and they will present the perspective of the research from the industrial point of view, the direction of the reference market, and the hot point of the development in their specific sectors.

They will be a sort of windows, open to the industrial world, from the research to the strategy, from the objectives to the protections from concurrence. They will not be too specialistic so they can be very useful for doctoral and post-doctoral students from the scientific and technological areas. It is a unique chance you have to see what is happening in the industrial world and in which field you could apply for finding an interesting job.

They will be given in English and the access is free.

In agreement with the coordinators of your doctoral course, your participation will be accounted for in your didactic duty.

Instructions for attending:

Since September 27th, Seminars will be held every Tuesday (14.00 – 16.00) and Wednesday (11.00 – 13.00) respectively in room Speroni and room Jolles at the Department of Chemistry <u>and will be online by</u> <u>streaming</u> with Webex.

To access the streaming you have:

- 1) to go to Moodle: <u>https://e-l.unifi.it/</u>
- 2) Look for the course B0300750 (B234) Modern trends in chemistry, industry, and management, for the year 2022-23.
- 3) Register as a participant in the course (also if you attend only one lesson); the access is open, and no password is required
- 4) At the beginning of the folder of the course, you will find the connector for participating in the lesson in which you are interested.

Alternatively, I'll try to send at the beginning of each week, through the Doctoral secretariat, the remainder of the 2 seminars of the week, and the link and PW to directly connect to them.

I'll take care of the presence of the participants and I'll certificate them, for your didactic activity, at the end of the course. For each seminar attended you will get 0,33 CFU.

Cari dottorandi,

vi offriamo la possibilità di partecipare a una serie di seminari tenuti nell'ambito del corso Modern Trends in Chemistry, Industry, and Management per la laurea magistrale in Chimica. La partecipazione può avvenire sia in presenza che online. Quasi tutti i seminari saranno tenuti da ricercatori industriali che presenteranno la prospettiva della ricerca dal punto di vista industriale, la direzione del mercato di riferimento e i punti caldi dello sviluppo nei loro settori specifici.

Saranno una sorta di finestre aperte sul mondo industriale, dalla ricerca alla strategia, dagli obiettivi alle protezioni dalla concorrenza. Non saranno troppo specialistici, quindi potranno essere molto utili per gli studenti di dottorato e post-dottorato delle aree scientifiche e tecnologiche. Si tratta di un'occasione unica per vedere cosa succede nel mondo industriale e in quale campo si potrebbe fare domanda per trovare un lavoro interessante.

Le lezioni saranno tenute in inglese e l'accesso è libero.

In accordo con i coordinatori del vostro corso di dottorato, la vostra partecipazione sarà conteggiata nel vostro dovere didattico.

Istruzioni per la partecipazione:

Dal 27 settembre i seminari si terranno ogni martedì (14.00 - 16.00) e mercoledì (11.00 - 13.00) rispettivamente nell'aula Speroni e nell'aula Jolles del Dipartimento di Chimica e saranno contemporaneamente online in streaming con Webex.

Per accedere allo streaming è necessario:

1) andare su Moodle: https://e-l.unifi.it/

2) cercare il corso B0300750 (B234) Modern trends in chemistry, industry and management, per l'anno 2022-23.

3) Registrarsi come partecipante al corso (anche se si frequenta una sola lezione); l'accesso è aperto e non è richiesta alcuna password.

4) All'inizio della cartella del corso, in uno dei primi argomenti, troverete il connettore per partecipare alla lezione a cui siete interessati.

In alternativa, cercherò di inviare all'inizio di ogni settimana, tramite la segreteria del Dottorato, il promemoria dei 2 seminari della settimana, e il link e la pw per collegarsi direttamente.

Mi occuperò della presenza dei partecipanti e la certificherò, per la vostra attività didattica, alla fine del corso. **Per ogni seminario frequentato si otterranno 0,33 CFU.**

Programma del Corso Modern Trends in Chemistry, Industry and Management a.a. 2020-21 della laurea magistrale in Chimica Advanced Molecular Sciences

Contact with scientic and educational reference person: andrea.caneschi@unifi.it

Lessons will be given in 2 different rooms of the Department of chemistry:

Aula Speroni, via della Lastruccia 13, Sesto Fiorentino

Room Jolles (ex-room 186) – Via della Lastruccia 3, Sesto Fiorentino

Doctoral students and post-docs can attend also online

First column:

Purple: live, but online in streaming projected in the classroom, with the presence of Prof. caneschi;

Pale blue: live in presence at room Jolles or Speroni at DICUS building; <u>streaming will be also available</u>.

Second Column:

Green: energy saving and energy by alternatives to the fossil fuel approach 6 Lessons

emerald: soft skills, very important in the industry world. 2 Lessons

Yellow: fuels by biomass transformations. 4 Lessons

Red: pharma world. 6 Lessons

Purple: materials. 5 Lessons

Massimo Chindemi	ENI	The technology leverage towards decarbonization:the priority areas for Eni's R&D	27-set Room Speroni at DICUS	mart	14:00- 16:00	A strong acceleration in decarbonization represents themost important element to guide the world - and the energy sector in particular - along the trajectory outlined by a sustainable development scenario, according to the objective of the Paris Agreements. Decarbonization is a strategic priority for Eni which has as its goal zero net emissions from the upstream business by 2030 and net zero emission Scope 1+2+3 by 2050.Eni research has identified priority areas of high-impact technological development for the reduction and zeroing of CO2 emissions: some technological solutions are already under development, other are close to the industrialdeployment.
Laura Zanibelli	ENI	IP strategy & valorization	28-set Room Jolles at DICUS	merc	11.00- 13.00	In the framework of technological innovation into the industry, since the beginning of the idea generation up to industrial deployment of the technology, Intellectual Property (IP) strategy is mandatory to protect, manage and valorize patent portfolio and know how resulting from R&D projects and technological application, taking into account possible third parties' partnership, also through Open Innovation Model. A defined IP strategy, well aligned with business target, so contributes to strengthen and shorten the time to market of technology, especially crucial in the transition scenario, entering also with partners in different markets from the so called "business as usual" The focus of the lesson will regard the road map for IP strategy and valorization, to create value through intangible assets

Carlo	FNI	IP protection:	4-ott	mart	14.00-	Innovation and R&D activities are essential to any
		Patents and	Room	mare	16.00	Company willing to stay ahead in highly
00010		Freedom to	Speroni at		10.00	competitive and fast developing markets
		Operate				Intellectual Property protection plays a key role
		operate	Dicos			in gaining maintaining and defending
						competitive positions through the development
						of proper patentportfolios and active surveillance
						on the ability of exploiting technologies of
						interest by assessing their freedom to be
						operated
						Detents and Freedom to Operate analyses
						represent two main nillars in creating value
						from innovation
						Detent basics will be discussed from the
						Patent basics will be discussed, from the
						requirements of an invention of a granted right,
						the netentless freme. The following tenior will
						the debated
						be debated:
						- Inventions and patentabilityrequirements
						(noverty, inventive step, industrial
						application)
						- Patent competitive advantages
						- Patent Owner rights
						- Patent application structure
						- Filing, prosecution and granting of a patent
						application
						Freedom to Operate (FTO) analyses will also be
						illustrated, focusing on the risks emerging from the
						exploitation of a new technology and how to
						handle them. The presentation will focus on:
						- Patent infringement
						- Freedom to Operate purpose and meaning
						- Freedom to Operate phases and
						deliverables
						- FTO Risk management The basic
						understanding of
						how patents work represents an important skill for
						anyone involved in innovation processes.
Laura	ENI	How the	5-ott	merc	11.00-	Electrical power generation is changing
Meda	—	electrical	Room	mere	13.00	dramatically across the world because of the
		energycan be	Iolles at		10.00	needto reduce greenhouse gas emissions and to
		stored?	DICUS			introduce mixed and renewable energy sources
						This seminar will provide a basic knowledge of
						main storage technologies in orderto illustrate
						the advantages of main mechanical and
						electrochemical approaches
						with a focus on different kinds of rechargeable
						with a focus on unreferit Kinusof rechargeable
1		1	1		1	patteries.

Daniele	ENI	Biomass to biofuels:	11-ott	mart	14.00-	The seminar consists of two
Dianahi		biochamical technologies	Deem	mart	10.00	
Blanch		biochemical technologies	Room		10:00	sections:
			Speroni			1) a general introduction of
			at			the biofuel scenario, including
			DICUS			the impact of transportation
						sector on the GHG emission, the
						policy to promote biofuels, the
						biofuels pros & cons, and the
						sustainable biomass feedstock
						availability.
						2) an overview of the most
						relevant biochemical technology
						to produce biofuels from
						biomass.
<mark>Riccardo</mark>	ENI	Fusion Energy	12-ott	merc	11.00-	Nuclear fusion has the potential to
Po'			Room		13.00	afford abundant energy in a
			Jolles			sustainable way, without emitting
			at			greenhouse gases and without
			DICUS			producing long-lived radioactive
						wastes.
						In this lesson, the basic principles
						of nuclear fusion will be explained.
						Fusion will be compared with other
						energy sources and the scientific
						and technological aspects of fusion
						will be examined. Finally, the
						efforts of Eni in the field of
						magnetic confinement-based
						fusion will be illustrated
Aldo	FNI	Biomass to biofuels:	18-ott	mart	14:00-	Biofuel productions via
Bosetti		thermochemical	Room	mart	16.00	thermochemical approach are
Dosett		technologies	Sneroni			illustrated in the presentation
			at			Torrefaction Pyrolysis
			DICUS			Hydrothermal Liquefaction ang
						Gasification of biomasses are
						presented and discussed in term
						of main operative conditions
						hasic chemistry and status of
						technology (commercial or in
						progress). For every technology
						the presentation offers an
						overview of possible reactor
						ontions together with present or
						potential utilization of the main
						product in the field of biofuels
						Moreover organic waste
						utilization as feedstock is
						highlighted.

<mark>Giann</mark> i	Versalis	Bioeconomy in the	19-ott	merc	11.00-	Girotti: Market dimensions of
Girotti /	/CEFIC	Greendeal and how	Room		13.00	Bioeconomy, its sub-sectors and
Filippo		to develop Bio-based	Jolles at			specifically Bio-Based Products (BBPs)
Mantovani		products market /	DICUS			are discussed. BBPs drivers & barriers
		Bio-Based Products	2.000			are described and analyzed in details
		technologies				together with the actions really needed
		developed by Versalis				to develop the production and market of
						BBPs. A SWOT analysis is described
						based on the four aspects of BBPs
						development potential: Innovation and
						Technological readiness (I&T). Economic
						and Market potential (E&M), Social and
						Environmental impacts (S&E), Legal and
						Regulatory factors (L&R). Significant
						drivers and barriers from SWOT
						outcomes are then selected and
						highlighted and main actions to develop
						BBPs are then described with examples.
						Mantovani: The course describes the
						general concept of biorefinery through
						the analysis of several real cases;
						different green chemistry technologies in
						Versalis portfolio are described providing
						an overview of their production process
						and application fields of the bio-
						products. The analysis covers different
						market sectors where green chemistry is
						increasingly important: bio-fuels, bio-
F uence and	0.01/				44.00	Intermediates, bio-plastics and rubbers.
Francesca	GSK	vaccine	25 OTT	mart	14:00-	Electrodeposition of alloys of industrial
		technology	Room Snoroni at		16:00	interest with low environmental impact
		platforms	DICUS			industry. Morphological and compositional
						analysis of surfaces with Microscopic and
						Spectroscopic techniques Bronzection of
						modified surfaces for obtaining devices of
						technological interest. The lessons will try to
						develop the students' decision-making skills
						in the choice of the most appropriate
						surface techniques for the study of modified
						surfaces of technological and industrial
						interest.
Federica	Cosmeti	The Italian	26 ott	merc	11.00-	Every day millions of men and women wash,
Borsa /	caitalia	beauty	Room		13.00	make up, treat their body and hair, devoting
Gian		industry:	Jolles at			more and more time to taking care of
Andrea		scenario,	DICUS			themselves. The cosmetic has become an
Positano		market and				irreplaceable element in our daily life and
		trends				performs numerous functions, from the
						improvement of the physical aspect to the
						hydration, to the protection, to the
						perfume, to the detergency, to personal
						hygiene. All these functions have
						contributed to improving the lifestyle by
						increasing the quality and overall well-
						being. Cosmetics are part of our life. They
						contribute to our well-being and are
						precious allies of our health.
						I ne aim of this speech is precisely to tell the
						excellence of the Italian cosmetic industry:
						rrom the economic value of the sector to
						giobal level, to investinents in research and

						extent, together with how the same situation can be translated into other pharmaceutical companies is what will be depicted in this lecture.
						impact. Multi disciplinarity is hence one of the core requirements in Bracco Imaging R&D, and the role of a pure chemist needs to be shaped accordingly. How, and to what
						quality of the diagnostic techniques, biologists develop targeted contrast agents for specific pathologies, engineers design production plant with lower environmental
						advantages of synergies between different fields of applied research: physicists work on imaging instrumentation to optimize the
						characterization, process scale-up from kilolab to pilot plant up to industrial scale. However, R&D at Bracco Imaging is mostly based on finding new solutions by taking
						As a pharmaceutical company, most of the R&D activities of Bracco are focused on chemistry: design and synthesis of new molecular entities, analytical
						Bracco Imaging carries out its R&D activities in the Research Centers of Colleretto Giacosa (Ivrea, Italy) and Plan-les-Ouates (Geneva, Switzerland)
						Another R&D goal is the conception and implementation of high-efficiency production processes with special attention
						and substantial resources to research and development (R&D), in order to create and develop innovative products addressing
		Imaging SpA				of imaging agents and solutions aimed at providing a better use and management in terms of diagnostic efficacy, patient safety and cost effectiveness.
Poggi		pharmaceutical industry:the role of the research chemist in Bracco	Room Jolles at DICUS		13.00	company that acts as a worldwide provider of diagnostic imaging solutions. The company is committed to the discovery, development, manufacturing and marketing
Luisa	Bracco	Innovation in the	2 nov	merc	11.00-	forgetting the belonging of cosmetics to the excellence of Made in Italy. However, this is a little-known and poorly understood area. This will be the occasion to debunk false myths, clichés and lack of knowledge of cosmetics (many people do not know which products fall into this category). Bracco Imaging SpA is a pharmaceutical
						development (scientific value of cosmetics), to the attention towards sustainability and social responsibility (social value of cosmetics), to the professional opportunities it offers and to the interesting

Marcello Notar	Lubricants with low Environmental Impact	Speroni at DICUS			performances in the finished products. The main classes of additives will be illustrated, principally those involved in the current technological evolution of lubricants. This evolution is directed towards products that contribute to improve the energy efficiency of engines and machineries, engine lubricants highly compatible with the aftertreatment devices (particulate traps and catalytic converters) and products deriving from bio-renewable sources. Some classes of innovative additives that have been developed and are being studied in our laboratories will be illustrated. These additives will allow to face the technological evolution of the sector and are in line with Eni's decarbonization strategy.
Thomas Pasin	The Green refinery roadmap: the Ecofining™ technology	9-nov Room Jolles at DICUS	merc	11.00-13.00	In December 2018, EU issued the Renewable Energy Directive called REDII, which gives a binding target of at least 32% of renewable energy in the EU within 2030, of which at least 14% coming from the transport sector. Eni reckons that a holistic and technology neutral approach, consisting of a synergistic mix of solutions, is required to achieve such reduction. The diffusion of electric transport, especially at an urban mobility level, will contribute significantly to the emission reduction target. However, it is still limited by many factors, such as the high price of vehicles, the limited autonomy of travel guaranteed by batteries and the lack of an adequate number of charging infrastructures. In this scenario, a new class of fuels with low environmental impact, called Liquid Low Carbon Fuel (LLCF), might represent, already in the short term, an effective alternative in the path towards the decarbonization of the transport sector. Given their compatibility with the Internal Combustion Vehicles (ICE) currently in circulation and thanks to their lower cost with respect to electric mobility, the LLCFs may contribute to the achievement of the 2030 EU target. In addition, in order to further promote these fuels, European tax revisions based on the fuel carbon intensity could be considered, as to increase the social acceptability and to reduce the selling price of the LLCFs respect to fossil fuels. In recent years, Eni has already developed two LLCFs called Eni Diesel + which is premium diesel fuel formulated with 15% Hydrogenated Vegetable Oil (HVO) produced in Eni's bio-refineries by means of the EcofiningTM technology, an innovative flexible hydrogenation process for the production of bio-distillates starting from bio-feedstocks. Eni is working to maximize the use of HVO in Eni Diesel + assuring a Well-to-Wheel CO2 reduction when compared to a fossil diesel.

Corrado	SAES	"Innovation in action:	15-nov	mart	14:00- In the rapidly changing global context, only
Carretti	Getter	theSAES Getters	Room		16:00 innovation and diversification can allow
		case"	Speroni at		promoting the growth of a company;
			DICUS		innovation is therefore the fundamental
					asset for the long-term sustainability of the
					industrial ventures.
					The key point to innovate at the best is to
					have the right perception of the evolution of
					the external world, thus identifying the
					most promising technologies and markets,
					and to anticipate the possible obsolescence
					of proprietary expertise and products.
					Leverage both deep scientific knowledge
					and organizational skills appears the optimal
					strategy allowing to obtain the best
					achievements.
					This lesson describes some actual case
					studies concerning innovation in SAES, and
					will provide information about the
					differences between scientific research and
					applied research, the organizational and
					management issues to be solved, the
					possible innovation models to be applied
					and finally the skills and capabilities that
					scientists must possess to succeed in the
					industrial research.

L		I				
Massimo Innocenti	Universi tàdi Firenze	Electrodeposition and surfaces analysis in the Galvanic industry – Part 1	16-nov Room Jolles at DICUS	merc	11.00-13.00	Electrodeposition of alloys of industrial interest with low environmental impact with particular attention to the Galvanic industry. Morphological and compositional analysis of surfaces with Microscopic and Spectroscopic techniques. Preparation of modified surfaces for obtaining devices of technological interest. The lessons will try to develop the students' decision-making skills in the choice of the most appropriate surface techniques for the study of modified surfaces of technological and industrial interest.
Mauro Giusti	Eli Lilly	Chemistry graduates inthe pharmaceutical industry - testimonials from Eli Lilly	22-nov Room Speroni at DICUS	mart	14:00- 16:00	The activity of the Eli Lilly company will be presented by a director of the company. Two jounior researchers will present their research activities inside the Sesto Fiorentino plants. A discussion on the more suited profiles preferred by the company will be illustrated as like as an overview of the formation of personnel provided inside Eli Lilly will be presented.
Ernesto Roccaro	ENI	Hydrogen, a new energyvector: grey, green or blue	23-nov Room Jolles at DICUS	merc	11-13	An overview of the perspective of H2 in the Energy Transition, with focus on production. The European Green Deal puts the EU on a path to climate neutrality by 2050, through the deep decarbonisation of all sectors of the economy, and higher greenhouse gas emission reductions for 2030. This objective presents several challenges and it will require a radical transformation not only in how we generate, but also how we distribute, store, and consume energy. Hydrogen is destined to play a key role as clean and efficient fuel, as long as its production shifts from conventional high- polluting "grey" to more environmental friendly "blue" and "green" hydrogen production methods.
Dario Pasin	UniPV	Organic Photovoltaics	29-nov Room Speroni at DICUS	mart	14:00- 16:00	The lecture will deliver an overview, together with the key concepts, related to the use of organic photovoltaics technology (OPV). Over the past few years, the organic photovoltaics technology (OPV) has reached remarkable power conversion efficiencies (PCEs), mostly thanks to the advent of nonfullerene acceptors as well as to a high level of materials engineering. The lecture will start with an introductory section, in which the OPV technology will be put into the context of the other emerging photovoltaic technologies. It will be followed by a second section, in which the fundamentals and the working mechanism of the OPV cells will be rationalized. The third section will deal with the currently used materials, but it will also give an overview of the materials developed over the years. The final outlook section will put the OPV technology into the context of future potential market applications

Francesca		Electrodeposition and	6-dic	mart	14:00-	Despite the success of vaccination in
Micoli (GSK)		surfaces analysis in the	Room	mare	16:00	the last decades, there are still many
		Galvanic industry – Part 2	Speroni at		10.00	infectious diseases in need of a
`		Sulvane madstry Parez	DICUS			vaccine, especially in LMICs, where
)						multiple barriers, scientific,
						regulatory and economic, have so far
						of vaccines that target even the
						most common infectious diseases
						Use of technology platforms can
						facilitate vaccine development and
						their implementation in LMICs.
						Synergy of the different technologies
						currently available and their
						advancement will enable the
						for existing and novel targets
						expanding the number of available
						vaccines and tackling currently
						unmet medical needs.
						Two technologies for the
						development of bacterial vaccines
						will be discussed more in depth:
						glycoconjugation and Generalized
						Modules for Membrane Antigens
	Cromology	Architactural coatings	7 die	more	11.00	(GIVINIA). The seminar will give a wide
Contiero	Cromology	industry: chemistry	Room	merc	12.00-	overview of Cromology Italia as part
contiero		process and innovation	Jolles at		13.00	of international group focused on
		process and innovation	DICUS			development and production of
						coating for decorative applications.
						It will explain the technical basics of
						coating technologies with some
						specific focus on their properties,
						chemistry and industrial process
						typically in place in production
						plants, and involving mainly
						pigment based products. It will also
						explore the main ligures and
						innovation approach actually in
						place in Cromology Italia, and some
						important elements regulating legal
						aspects of new developments such
						as industrial know-how, intellectual
						property, confidential information
						exchange.
Silvia		Research and	13-dic	mart	14:00-	The development of a new drug to
Trasciatt		development in the	Room Speroni at		16:00	treat an liness is long, costly, nighty
i (Galileo		pharmaceutical	DICUS			Pharmaceutical R&D demands a
Researc		industry: preclinical				wide range of expertise: science
<mark>h)</mark>		and clinical stages. The				regulations, business, economics
		Galileo				On average, it takes 10-15 years and
		Research experience				costs \$2.6 billion to develop one new
						medicine, including the cost of the
						many failures, depending on the
						therapeutic area, treatment
						modality and disease complexity.
						Only 12% of new molecular entities
						that enter clinical trials eventually
1			1	1		receive marketing approval.

					Major reasons for drug failure are: lack of clinical efficacy, toxicity, poor drugability, lack of medical needs.
Francesco Bertocchi (Nanesa)	Graphene and its derivates: industrial fabrication and technological applications	14-dic Room Speroni at DICUS	mart	11:00- 13:00	The speech will be focused on the italian startup Nanesa. The company will present different GRM production process (Graphene Related Materials) and the development of different commercial grades. Many research activities related to the development of Industrial
					applications, based on GRM @ different TRL will be presented too.